Optimal Parameters Estimation of a Switched Reluctance Motor by Kohonen’s Self Organizing Feature Map Method

نویسندگان

  • Sumit Kumar Sah
  • K. M. Rahman
  • S. Gopalakrishnan
  • E. Mese
  • D. A. Torrey
  • Wenzhe Lu
  • Ali Keyhani
  • B. Fahimi
  • G. Suresh
  • J. Mahdavi
چکیده

SRM drives are the upcoming drives nowadays as these have many advantages such as simplicity , low manufacturing and operating costs, fault tolerance, high torque/inertia ratio and efficiency. The estimation of SRM drive parameters is an important consideration in their field. Many methods are available for this. However the estimation of the optimal parameters is normally preferred. Making use of neural networks is one of the best ways to achieve this. This paper proposes an unsupervised learning method i.e., Kohonen’s Self Organizing Feature Map method of estimation of SRM drives. Since the method makes use of ‘winner takes all’ of a neuron, the values obtained by this, will be the optimal values. The drive is first simulated and the parameters obtained are used for training the ANN. The Unsupervised learning method is the Kohonen’s Self Organizing Feature Map method, which is used for the estimation of the SRM drive parameters. The parameters estimated are the currents and fluxes in the two axis .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensorless Speed Control of Switched Reluctance Motor Drive Using the Binary Observer with Online Flux-Linkage Estimation

An adaptive online flux-linkage estimation method for the sensorless control of switched reluctance motor (SRM) drive is presented in this paper. Sensorless operation is achieved through a binary observer based algorithm. In order to avoid using the look up tables of motor characteristics, which makes the system, depends on motor parameters, an adaptive identification algorithm is used to estim...

متن کامل

A Fuzzy Expert System for Predicting the Performance of Switched Reluctance Motor

In this paper a fuzzy expert system for predicting the performance of a switched reluctance motor has been developed. The design vector consists of design parameters, and output performance variables are efficiency and torque ripple. An accurate analysis program based on Improved Magnetic Equivalent Circuit (IMEC) method has been used to generate the input-output data. These input-output data i...

متن کامل

Design, Construction and Comparison of a Sensorless Driver Circuit for Switched Reluctance Motor

In the presented paper, a sensorless driver circuit is designed, constructed and tested to control two types of three-phase Switched Reluctance Motor (SRM). The presented control algorithm has three steps. In the first step, the SRM is controlled by an open-loop method. In the second step, mathematical model of the SRM phase, motor parameters and flux-current-rotor position relation are used in...

متن کامل

Air Quality Modelling by Kohonen’s Self-organizing Feature Maps and LVQ Neural Networks

The paper presents a design of parameters for air quality modelling and the classification of districts into classes according to their pollution. Further, it presents a model design, data pre-processing, the designs of various structures of Kohonen’s Self-organizing Feature Maps (unsupervised methods), the clustering by K-means algorithm and the classification by Learning Vector Quantization n...

متن کامل

A Feature Map Approach to Pose Estimation Based on Quaternions

This paper proposes a novel solution to the problem of pose estimation of three-dimensional objects using feature maps. Our approach relies on quaternions as the mathematical representation of object orientation. We introduce the rigid map, which is derived from Kohonen’s self-organizing feature map. Its topology is fixed and chosen in accordance with the quaternion representation. The map is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011